Inflection points are points on a curve where the concavity changes. Here's how to find them:
Find the Second Derivative: Calculate the second derivative, often denoted as f''(x), of the function f(x). This requires you to first find the <a href="https://www.wikiwhat.page/kavramlar/first%20derivative" >first derivative</a>, f'(x).
Set the Second Derivative to Zero: Set f''(x) = 0 and solve for x. The solutions are potential inflection points. Also, check where f''(x) is undefined, as these points could also be inflection points.
Test for Change in Concavity: For each potential inflection point c, test the concavity of f(x) on either side of c. You can do this by picking test values slightly less than and slightly greater than c and plugging them into f''(x).
Confirm Inflection Point: If the concavity changes at c (i.e., f''(x) changes sign from positive to negative or vice-versa), then the point (c, f(c)) is an inflection point. If the concavity does not change, then (c, f(c)) is not an inflection point, even if f''(c) = 0.
Important Considerations:
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page